Butterfly: A Panacea for All Difficulties in
Wildly Unsupervised Domain Adaptation

Feng Liu'2 Jie Lu' BoHan? GangNiu? Guangquan Zhang' and Masashi Sugiyama?-3
!Center for Artificial Intelligence, University of Technology Sydney, Australia
2Center for Advanced Intelligence Project, RIKEN, Japan
3Graduate School of Frontier Sciences, University of Tokyo, Japan
feng.liu-2@student.uts.edu.au, {bo.han, gang.niu} @riken.jp,
{jie.lu, guangquan.zhang} @uts.edu.au, sugi @k.u-tokyo.ac.jp

Abstract

In unsupervised domain adaptation (UDA), classifiers for the target domain (TD)
are trained with clean labeled data from the source domain (SD) and unlabeled data
from TD. However, in the wild, it is hard to acquire a large amount of perfectly
clean labeled data in SD given limited budget. Hence, we consider a new, more
realistic and more challenging problem setting, where classifiers have to be trained
with noisy labeled data from SD and unlabeled data from TD—we name it wildly
UDA (WUDA). We show that WUDA provably ruins all UDA methods if taking
no care of label noise in SD, and to this end, we propose a Butterfly framework, a
panacea for all difficulties in WUDA. Butterfly maintains four models (e.g., deep
networks) simultaneously, where two take care of all adaptations (i.e., noisy-to-
clean, labeled-to-unlabeled, and SD-to-TD-distributional) and then the other two
can focus on classification in TD. As a consequence, Butterfly possesses all the
necessary components for all the challenges in WUDA. Experiments demonstrate
that under WUDA, Butterfly significantly outperforms existing baseline methods.

1 Introduction

Domain adaptation (DA) aims to learn a discriminative classifier in the presence of a shift between
training data in source domain and test data in target domain [2, 6, 33, 36, 37]. Currently, DA can be
divided into three categories: supervised DA [30], semi-supervised DA [14] and unsupervised DA
(UDA) [25]. When the number of labeled data is few in target domain, supervised DA is also known
as few-shot DA [24]. Since unlabeled data in target domain can be easily obtained, UDA exhibits the
greatest potential in the real world [6, 7, 9, 11, 22, 25, 26].

UDA methods train with clean labeled data in source domain (i.e., clean source data) and unlabeled
data in target domain (i.e., unlabeled target data) to obtain classifiers for the target domain, which
mainly consist of three orthogonal techniques: integral probability metrics IPM) [8, 11, 12, 18, 22,
35], adversarial training [7, 10, 16, 20, 26, 31] and pseudo labeling [25]. Compared to IPM- and
adversarial-training-based methods, the pseudo-labeling-based method (i.e., asymmetric tri-training
domain adaptation (ATDA) [25]) can construct a high-quality target-specific representation, providing
a better classification performance. Besides, ATDA has been theoretically justified [25].

However, in the wild, the data volume of source domain tends to be large. To avoid the expensive
labeling cost, labeled data in source domain normally come from amateur annotators or the Internet
[19, 27, 29]. This brings us a new, more realistic and more challenging problem, wildy unsupervised
domain adaptation (abbreviated as WUDA, Figure 1). This adaptation aims to transfer knowledge

from noisy labeled data in source domain (P, i.e., noisy source data) to unlabeled target data (P,).

Workshop on Learning Transferable Skills, 33rd Conference on Neural Information Processing Systems (NeurIPS
2019), Vancouver, Canada.

The blue line denotes that UDA transfers knowledge from
clean source dataP¢) to unlabeled target datdy,).
However, perfectly clean data is hard to acquire. This
bringswildly unsupervised domain adaptati¢?wUDA),
namely transferring knowledge from noisy source data

(B) to unlabeled target dat®y,). Note that noise gen-
eration process (black dash line) is unknown in prac-
tice. To handle WUDA, a compromise solution is a two-
step approach (green line), which sequentially combines
label-noise algorithms® ! Ps) and existing UDA

(Ps ! Px,). This paper proposes a robust one-step ap-
proach called Buttery (red linef® ! Py, directly),
which eliminates noise effects froRs.

Figure 1: Wildly unsupervised domain adaptation (WUDA).

Unfortunately, existing UDA methods share an implicit assumptionttieae are no noisy source data
Namely, these methods focus on transferring knowledge from clean sourc®gdatia (nlabeled
target dataRy,). Therefore, these methods cannot well handle the WUDA.

In this paper, we theoretically reveal the de ciency of existing UDA methods. To improve these
methods, a straightforward strategy is a two-step approach. In Figure 1, we can rst use label-noise
algorithms to train a model on noisy source data, then leverage this trained model to assign pseudo
labels for noisy source data. Via UDA methods, we can transfer knowledge from pseudo-labeled
source dataRs) to unlabeled target dat#®y,). Nonetheless, pseudo-labeled source data are still
noisy, and such two-step strategy may relieve but cannot eliminate noise effects.

To circumvent the issue of two-step approach, under the theoretical guidance, we present a robust
one-step approach call<ter y. In high level, Butter y directly transfers knowledge frof to

Py, , and uses the transferred knowledge to construct target-speci c representations. In low level,
Butter y maintains four networks dividing two branches (Figure 2): Two networks in Branch-I are
jointly trained on noisy source data and pseudo-labeled target data (data in mixture domain); while
two networks in Branch-Il are trained on pseudo-labeled target data.

The reason why Butter y can be robust takes root indl@l-checkingprinciple: Butter y checks
high-correctness data out, from not only the data in mixture domain but also the pseudo-labeled
target data. After cross-propagating these high-correctness data, Butter y can obtain high-quality
domain-invariant representatiof®IR) andtarget-speci ¢ representationd SR) simultaneously in

an iterative manner. If we only check data in the mixture domain (i.e., single checking), the error
existed in pseudo-labeled target data will accumulate, leading to low-quality DIR and TSR.

We conduct experiments on simulated WUDA tasks, includimgNIST-to-SYNDRasks 4 SYND-
to-MNISTtasks and®4 human-sentimentsks. Besides, we conduct experiment8oeal-world
WUDA tasks. Empirical results demonstrate that Butter y can robustly transfer knowledge from
noisy source data to unlabeled target data. Meanwhile, Butter y performs much better than existing
UDA methods when source domain suffers the extreme @580 noise.

2 Wildly unsupervised domain adaptation
In this section, we rst de ne the new problem setting, and then analyze why it is so dif cult.

Problem setting We use following notations in this section: 1) a space RY andY =

rect and incorrect multivariate random variables (m.r.v.) de neXoN , respectively, andpy, (Xs),

Px. (Xs) andgy, (Xs) are their marginal densities; andig) (x;) represents density of m.rx; de-
ned on X ; and 4) we usé(h(x); h%x)) to represent loss function between two labelling functions;
and 5) we us®s(h) = Eg, (x..y)[(N(Xs); ¥s)] andRs(h) = Ep, (x.y.)[(h(Xs);ys)] to represent
expected risks on the noisy and correct m.r.v.; and 6) weRgh; h%) = E,, _(x,)[(h(xs); h%xs))],

There are two common ways to express the density of noisy m.r.v. (Appendix A). One way is to use a
mixture of densities of correct and incorrect m.r.v..

Butter y framework trains four networks. Two networks in Branch-| are jointly trained on noisy source data
and pseudo-labeled target data (mixture domain). Two networks in Branch-II are trained on pseudo-labeled
target data. By using dual-checking principle, Butter y checks high-correctness data out from both mixture and
pseudo-labeled target data. After cross-propagating checked data, Butter y can obtain highetpnakty-
invariant representationéDIR) andtarget-speci ¢ representationd SR) simultaneously in an iterative manner.

Note that TSR naturally re nes DIR via sharing weights in CNN. Note that the interaction between DIR and
TSR happens via the shared CNN. Besides, in the rst training epoch, since we do not have any pseudo-labeled
target data, we need to use noisy source data as the pseudo-labeled target data, which follows [25].

Figure 2: Butter y Framework.

Rs(h;h9 = Ep, (o) [(N(xs); hYxe))] @ndRy(h;hO) = Ep, () [(h(x0); h%x.))] to represent ex-
pected discrepancy between two labelling functionts® under different marginal densities; 7) the
ground-truth and pseudo labeling function of the target domain are denofe@py andft(x;).

We formally de ne the new adaptation as follows.

De nition 1 (Wildly Unsupervised Domain Adaptation).et X; be a multivariate random variable
de ned on the spacX with respective a probability densipy, , wherepy, 6 py,. Given i.i.d. data

Ds = f(Xsi;¥si)0, andDy = fxq g, drawn fromPg andPy, , a wildly unsupervised domain
adaptation aims to train witlids andD, to accurately annotate eacty; .

In De nition 1, Dy is noisy source dateD; is unlabeled target data, afd and Py, are two
probability measures corresponding to denspigss;) andpy, (Xt). Please note thatll proofs
are demonstrated in Appendix H

Nature of WUDA. Speci cally, there are ve distributions involved in WUDA setting: 1) a
marginal distribution on source data, i.p, in De nition 1; 2) a marginal distribution on target
data, i.e.px, in De nition 1; 3) an incorrect conditional distribution of label gives, q(ysjxs); 4) a
correct conditional distribution of label giveqy, p(ysjxs) and 5) a correct conditional distribution of
label givenx:, p(ytjXt).

Based on De nition 1 and Appendix A.2, noisy source dBta are drawn fromps(Xs;ys) =
Px. (X)X)p(ysixs)+ q(ysjXs)), where is the noise rate in source data. Namely, source data

D are mixture of correct source data frgmn (Xs)p(ysjXs) and incorrect data from (Xs)g(YsjXs)-

Target datéD; are drawn fronpy, . In WUDA, we aim to train a classi er witlDs andD;. This
classi er is expected to accurately annotate data fpgmi.e., to accurately simulate distribution 5).

WUDA provably ruins all UDA methods Theoretically, we analyze why existing UDA methods
cannot well transfer useful knowledge from noisy source Bat#o unlabelled target dafa; directly.
We rst present a theorem to show relations betwBg(h) andRs(h).

Theorem 1. For any labelling functiorh : X 'Y | if ps(Xs; ¥s) is generated by a transition matrix
Q as demonstrated in Appendix A.1, we have

Rs(h) = Rs(h) + Ep, xl " (xs)(Q 1) (h(xs))]; 1)

where’ (h(xs)) = [*(h(xs); 1); 2117 (h(xs); K)IT and (Xs) = [Pv,jx (1Xs): 255 Py (K jxs)] T
If ps(Xs; ¥s) is generated by sample selection as described in in Appendix A.2, we have

Rs(h)=(1 IRs(h)+ Eg (xo)l g (Xs) (h(xs)]; (2)
where q(xs) = [Gv,jx (1iXs); 3255 Gvjx, (Kixs)] T
Remark 1. In Eq. (2), Eq_(x.)l g(xs)‘(h(xs))] represents the expected risk on the incorrect

m.r.v.. To ensure that we can gain useful knowledge fRamwe need to avoiRs(h) Eg, (x,)
[g(xs)‘(h(xs))]. Speci cally, we assume: there is a constdnt< Mg < 1 such that

Eq., xo)[g (Xs) (h(Xs)] Rs(h) + Ms.

Theorem 1 shows that the expected figl(h) only equalsRs(h) when two cases happen: Q)= |

and =0 and 2) some special combinations (e.g., spakiala., Q, and’)to make the second

term in Eq.(1) equal zero or to make the second term in &j.equal R s(h). Case 1) means that

data in source domain is clean, which is not real in the wild. Case 2) almost never happens, since it is
hard to nd such special combinations whpn , ox., Q and are unknown. ThusRs(h) has an
essential difference witRs(h). Then, we derive the upper boundrRf(h) as follows.

Theorem 2. For any labelling functiorh : X 'Y |, we have

Re(h; 1) E:{QR + 1Rt(h:f"t') R’s(h;f’{)}' +1'Rs(h;f“fzz RS(W

{z
(i) risk on noisy data (ii) discrepancy between distributions (iii) domain dissimilarity
1Rs(h) Rs(h)j JEs(h,fT) Rs(h,ft)g |Rt(h ft) Re(h; f’“)g
(iv) noise effects from source s (v) noise effects from target

Remark 2. To ensure that we can gain useful knowledge ffQix;), we assume: there is a constant
0<M <1 suchthay [(h(x);fi(x))] Rs(h;f7) + M andEq, (x)[(h(x);fi(x))]
Ri(h;f¢) + My, wheregy, (X) = px, (X)1a (X)=Px, (A) andA = fx : fi(x) 6 fi(x)g.

It is clear that the upper bound &% (h;f;), shown in(3), has5 components. However, existing
UDA methods only focus on minimizing) + (ii) [7, 8, 22] or (i) + (ii) + (iii) [25], which ignores
terms(iv) and(v) (i.e., = s+). Thus, in theory, existing UDA methods cannot handle wildly
unsupervised domain adaptation well.

3 Two-step approach versus one-step approach

Two-step approach (a compromise solution) To reduce noise effects from noisy source data, a
straightforward way is to apply a two-step strategy. For example, we rst use Co-teaéhbjrg [

train a model with noisy source data, then these data are assigned pseudo labels using the trained
model. Via ATDA approach, we can transfer knowledge from the pseudo-labeled source data to
unlabeled target data.

Nonetheless, the pseudo-labeled source data is still noisy. Let labels of noisy sourge luata
replaced with pseudo labeg§ after pre-processing. Noise effectswill become pseudo-label effects
p as follows.

=1'R2(h) Rs(h)j+igg(h;ﬁ) Rs(h;m}# t (4)

0
S

whereR3(h) andR3(h; f‘{) correspond t&Rs(h) andRs(h; f7) in 5. Itis clear that the difference
between ,and is 2 s. The rsttermin 2 may be less than that ins due to Co-teaching,
but the second term in ¢ may be higher than that ing since Co- teachlng does not consider to
minimize it. Thus, itis hard to say whethe? < ¢ (i.e., p <). This means that, the two-step
strategy may not really reduce noise effects

pseudo-label effects from source

Algorithm 1 Checkingfi, F2,D, ,)

1: Input networksF1, F2, mini-batchD, learning rate , remember rate ;

2: Obtain u; = arg min u%:1u9> jDj L(1; ud;Fy; D); I/l Check high-correctness data
3: Obtain uz =argmin ,9.149> joj L(2; u3;Fz2;D); /I Check high-correctness data
4:Update 1= 1 rL (1;uz;F1;D); // Update 1

5: Update , = » rL (2;us1;F2;D); / Update »

6: Output F; and F»

One-step approach (a noise-eliminating solution) To eliminate noise effects , we aim to select
correct data simultaneously from noisy source data and pseudo-labeled target data.

In theory (see Appendix H.3), we prove that noise effects will be eliminated if we can select correct
data with a high probability. Let3;, represent the probability that incorrect data is selected from
noisy source data, ang, represent the probability that incorrect data is selected from pseudo-labeled
target data. Theorem 3 shows that 0if §,! Oand §,; ! Oand presents a new upper bound

of R¢(h;f¢) (see Eq. (13) in Appendix H.3).

4 Butter y: Towards robust one-step approach

This section presents a robust one-step approach called Butter y in details, and demonstrates how
Butter y minimizes all terms in the right side of Eq. (13) (the upper boun>h:; f)).

Principled design of Buttery Guided by Theorem 3 (see Appendix H.3), a robust approach
should check high-correctness data out (meanfad Oand §, ! 0). This checking process will
make(iv) and(v), 2 +2 , become). Then, we can obtain gradientsRE°(h; us), Rs(h; f7; us)
andR°(h; f7; uy) w.r.t. parameters di and use these gradients to minimize them, which minimizes
(i) and(ii) as(i) + (ii) RE(h;us) + Rs(h;fi;us) + RY°(h; ft;uy). Note that(iii) cannot be
directly minimized since we cannot pinpoint clean source data. However, follo@filjgWe can
indirectly minimize(iii) via minimizingRE°(h; us)+ RE°(h; f1; us), as(iii) Rs(h; 1)+ Rs(h)
RE°(h;us) + RE%(h; f1;us) +2 , where the last inequality followd 2). This means that a robust
approach guided by Theorem 3 can minimize all terms in the right side of inequality in (13).

To realize this robust approach, we propose a Butter y framework (Algorithm 2), which trains four
networks dividing into two branches (Figure 2). By using dual-checking principle, Branch-I checks
which data is correct in the mixture domain; while Branch-1l checks which pseudo-labeled target
data is correct. To ensure these checked data highly-correct, we apply the small-loss trick based on
memorization effects of deep learning.[After cross-propagating these checked dataButter y

can obtain high-quality DIR and TSR simultaneously in an iterative manner. Theoretically, Branch-I
minimizes(i) + (ii) + (iii) + ('iv); while Branch-Il minimizeqii) + (v). This means that Butter y

can minimize all terms in the right side of inequality in (13).

Loss function in Buttery — Due toRE°(h; us), RY°(h; f1; ur) andRE%(h; f1; us) in Theorem 3,
four networks trained by Butter y share the same loss function but with different inputs.

1 X0
L(; u;FD)= P—— Ui (F(xi);yi); ©)

i=1 F1 =1
wheren is the batch size, anfd represents a network (e.€1; F2; Fi1 andFi2). D = f(Xi;Vi)oi-;
is a mini-batch for training a network, whefrg; ; y; g'.; could be data in mixture domain or target
domain (Figure 2), and represents parameters®fandu = [uy;::;;u,]" is ann-by-1 vector
whose elements equ@lor 1. For two networks in Branch-I, following?p], we also add a regularizer
j an f 21] in their loss functions, wherg 1; and ¢ »; are weights of the rst fully-connect layer of
F1 andF,. With this regularizerf-; andF, will learn from different features.

Training procedure of Buttery For two networks in each branch, they will rst check high-
correctness data out and then cross update their parameters using these data. Algorithm 1 show how
F1 andF;, (or F;; andF;;) check these data out and use checked data to update parameters of them.

Algorithm 2 Butter y Framework: quadruple training for WUDA problem

1: Input D, D¢, learning rate , xed , xed , epochTx andTmax , iterationNmax , # of pseudo-labeled
target dataini , Max ofNinic Nimax
2: Initial F1,F2, Fi1, Fi2, D} = D, D = Ds, N} = Ninit ;
forT=1;2;:::;Tmax doO
3: Shuf e training setD; /I Noisy dataset
for N =1;:::;Nmax do

4: Fetch mini-batchD from D;

5: Update Branch-1:F1; F, = CheckingF1; F2;D; ;R (T)); /I Check mixture samples
6: Fetch mini-batchD. from D!;
7: Update Branch-II:Fi1; Fi2 = CheckingFt1; Fi2; D¢; ;R «(T)); /I Check target samples
end
8: Obtain D} = Labelling(F1;F2;D¢;n}); // Label D¢, following [25]

9: Obtain D' = D[Di;
10: Updaten} = min fT=20 Ny Nimax O;
11: UpdateR(T)=1 minf{-; g R(T)=1 minfd- ¢ .g;

end
12: Output Fi; andF:»

Based on loss function de ned in E€p), the entire training procedure of Butter y is shown in
Algorithm 2. First, the algorithm initializes training data for two branctzdd¢r Branch-I1 andD}

for Branch-Il), four networksK;; F»; Fy1 andF;2) and the number of pseudo labels (I In the

rst epoch (T = 1), D andD] are the same witB's because there are only unlabeled target data.
After mini-batchD is fetched fronD (line 4), F; andF, check high-correctness data out and update
their parameters using Algorithm 1 (linBs Using similar procedures;;; andF;, can also update
their parameters using Algorithm 1 (linésy).

In each epoch, aftéM nax Mini-batch updating, we randomly selagtunlabeled target data and
assign them pseudo labels usiRg andF, (lines 8). Following [25], the Labeling function in
Algorithm 2 (line 8) assigns pseudo labels for unlabeled target data, when predicti6hsaofdF,
agree and at least one of them is con dent about their predictions (probability 8ibge0:95).
Using this function, we can obtain the pseudo-labeled targetiatar training Branch-11 in the next
epoch. Then, we merdg! andD to beD for training Branch-1 in the next epoch (lir. Finally,
we updaten}, R(T) andR(T) in lines10-11 according to [25] and [15].

Relations to Co-teaching and TCL Although Co-teachingl5] applies the small-loss trick and

the cross-update technigue to train deep networks against noisy data, it can only deal with one-domain
problem instead cross-domain problem. Recalling de nitions gfand ; in (3), Co-teaching can

only minimize the rsttermin sor ¢, andignore the second term in;. This de ciency limits
Co-teaching to eliminate noise effectg + ;. However, Butter y can naturally eliminate them.
Recentlytransferable curriculum learningTCL) is a robust UDA method to handle nois&s]. TCL

uses small-loss trick to train tltwmain-adversarial neural netwoOANN) [7]. However, TCL can

only minimize(i) + (ii) + (iv), while Butter y can minimize all terms in the right side of (13).

5 Experiments

Simulated WUDA tasks We verify the effectiveness of our approach on three benchmark datasets
(vision and text), includindINIST, SYN-DIGITS (SYND3IndAmazon products reviews.g.,book

dvd electronicsandkitcher). They are used to construtd basic tasksMNIST! SYND(M!),

SYND MNIST(S M), book dvd(B! D), book electronicgB! E),:::, andkitchen! elec-
tronics (K! E). These tasks are often used for evaluation of UDA methadgd, 26]. Since all
source datasets are clean, we need to corrupt source datasets manually by a noise transiti@n matrix
[15, 17], which can form simulated WUDA tasks. We assume that the m@ttiras two representative
structures: 1) Symmetry ipping; 2) Pair ipping [15], which are de ned in Appendix B.

The noise rate is chosen fronf 0:2; 0:45g. Intuitively, = 0:45means almost over half of the
noisy source data have wrong labels that cannot be learned without additional assumptiéna.
means onl\20% labels are corrupted, which is a low-level noise situation. Note that pair case is

(@) 20 (b) 45 (c) P20 (d) P45
Figure 3: Target-domain accuracy vs. number of epochs onS¥IND MNIST tasks.

much harder than symmetry cadé]l For each basic task, we have four kinds of noisy source data:
Pair-45% (P45), Pair-20% (P20), Symmetryd5% ($45), Symmetn20% (S20). Thus, we evaluate

the performance of each method usB&simulated WUDA tasks8 digit recognition tasks ang4
human-sentiment tasks. Note that the human-sentiment task is a binary classi cation problem, so
pair ipping is equal to symmetry ipping. Thus, we only ha2d human-sentiment tasks. Results

on human-sentiment tasks are reported in Appendix C.

Real-world WUDA tasks We also verify the ef cacy of our approach on “cross-dataset benchmark”
including Bing, Caltech256ImageneandSUN|[29]. In this benchmarkBing, Caltech256Imagenet
andSUN contain commor0 classes. SincBing dataset was formed by collecting images retrieved

by Bing image search, it contains rich noisy data, with presence of multiple objects in the same image,
polysemy and caricaturizatio9]. We useBing as noisy source data, a@ltech25¢1magenetand
SUNas unlabeled target data, which can form three real-world WUDA tasks.

Baselines We realize Butter y using four networks (abbreviated as B-Net) and compare B-Net
with following baselines: 1) ATDA: representative pseudo label based UDA me#ipd?) deep
adaptation networkéDAN): representative IPM based UDA methdtl’]; 3) DANN: representative
adversiral training based UDA method;[4) Co teaching+ATDA (Co+ATDA): a two-step method,
which is a combination of the state-of-the-art label-noise algorithm (Co-teacHifgaid UDA
method (ATDA) R5]; 5) TCL: an existing robust UDA method; @-Net with1 target-speci ¢
network(B-Net-1T): without considering ; (single-checking method). Note that ATDA is the most
related UDA method compared to B-Net. Implementation details are demonstrated in Appendix D.

Results on simulated WUDA (including8 tasks) Table 1 reports the accuracy on the unlabled
target data irB tasks. As can be seen, o2(Bcase (the easiest case), most methods work well.
ATDA has a satisfactory performance although it does not consider the noise effects explicitly. Then,
when facing harder cases (i.e20Rand RI5), ATDA fails to transfer useful knowledge from noisy
source data to unlabeled target data. On Pair- ip cases, the performance of ATDA is much lower
than our methods. When facing hardest cases kilk. Swith P45 and $15), DANN has the higher
accuracy than DAN and ATDA. However, when facing easiest casesSi.&v] with P20and 20),

the performance of DANN is worse than that of DAN and ATDA.

Although two-step method Co+ATDA outperforms ATDA in 8litasks, it cannot beat one-step
methods (B-Net-1T and B-Net) in terms of average accuracy. This result is an evidence for the claim

in Section 3. In Table 1, B-Net outperforms B-Net-1T7iout of 8 tasks. This reveals that pseudo-
labeled target data indeed reduce the quality of TSR. Note that B-Net cannot outperform all methods
in all tasks. In the tas® M with P20, Co+ATDA outperforms all methods (slightly higher than
B-Net), since pseudo-labeled source data are almost correct. In thdtaSkvith $45, B-Net-1T
outperforms all methods, including the second best B-Net. We conjecture that pseudo-labeled target
data may contain much instance-dependence noise in this special case, where small-loss data may not
be fully correct.

Figures 3 and 4 show the target-domain accuracy vs. number of epochs among ATDA, Co+ATDA,
B-Net-1T and B-Net. Besides, we show the accuracy of ATDA trained with clean source data (ATDA-
TCS) as a reference point. When accuracy of one method is close to that of ATDA-TCS (red dash
line), this method successfully eliminates noise effects. From our observations, it is clear that B-Net
is very close to ATDA-TCS irv out of 8 tasks (except fo M task with RI5, Figure 3-(d)), which

is an evidence of Theorem 3. Sincé3tase is the hardest one, it is reasonable that B-Net cannot
perfectly eliminate noise effects. An interesting phenomenon is that, B-Net outperforms ATDA-TCS
in 2M! Stasks (Figure 4-(a), (c)). This means that B-Net transfers more useful knowledge (from

(a) S0 (b) A5 (c) P20 (d) P45
Figure 4: Target-domain accuracy vs. number of epochs olMIST SYNDtasks.

Table 1: Target-domain accuracy 8iYNC MNIST (8 tasks). Bold value represents highest accuracy
in each row.

Tasks Type DAN DANN ATDA TCL Co+ATDA B-Net-1T B-Net

P20 90.17% 79.06% 55.95% 80.81% 95.37% 93.45% 95.29%
P45 67.00% 55.34% 53.66% 55.97% 75.43% 83.53% 90.21%
S M s20 9074% 75.19% 89.87% 80.23% 95.22% 94.44% 95.88%
$45 89.31% 65.87% 87.53% 68.54% 92.03% 94.89% 94.97%

P20 40.82% 58.78% 33.74% 58.88% 58.02% 58.35% 60.36%
P45 28.41% 43.70% 19.50% 45.31% 46.80% 54.05% 56.62%
M!'S s20 30.62% 53.52% 49.80% 56.74% 56.64% 54.90% 57.05%
A5 28.21% 43.76% 17.20% 49.91% 54.29% 57.51% 56.18%

Average 58.16% 58.01% 50.91% 62.05% 71.73% 73.89%75.82%

noisy source data to unlabeled target data) even than ATDA (from clean source data to unlabeled
target data).

Results on real-world WUDA (including 3 tasks) Finally, we show our results on real-world
WUDA tasks. Table 2 reports the target-domain accuracy3ftasks. B-Net enjoys the best
performance on all tasks. It should be noted that, in Bitly! Caltech256andBing! ImageNet
tasks, ATDA is slightly worse than B-Net. However, Bing! SUN task, ATDA is much worse

than B-Net. The reason is that the DIR betw@&#ng andSUN are more affected by noisy source
data. This phenomenon is also observed when comparing DANN and TCL. Compared to Co+ATDA,
ATDA is slightly better than Co+ATDA. This abnormal phenomenon can be explained usir{g@)Eq.

In Eq. (4), after using Co-teaching to assign pseudo labels for noisy sourceRiataRigure 1), the
second term in 2 may increase, which results in, >, i.e., noise effects actually increase. This
phenomenon is an evidence that a two-step method may not really reduce noise effects.

Table 2: Target-domain accuracy on real-world tasks. The source domainBsthdataset that
contains noisy information from the Internet. Bold value represents highest accuracy in each row.

Target DAN DANN ATDA TCL Co+ATDA B-Net-1T B-Net

Caltech256 77.83% 78.00% 80.84% 79.35% 79.89% 81.26% 81.71%
Imagenet 70.29% 72.16% 74.89% 72.53% 74.73% 74.81% 75.00%
SUN 2456% 26.80% 26.26% 28.80% 26.31% 30.45% 30.54%

Average 57.56% 58.99% 60.66% 60.23% 60.31% 62.17%62.42%

6 Conclusions

This paper opens a new problem calleitly unsupervised domain adaptatigyUDA). However,
existing UDA methods cannot handle WUDA well. Under the theoretical guidance, we propose a
robust one-step approach calBdtter y. Butter y maintains four deep networks simultaneously:
Two take care of all adaptations; while the other two can focus on classi cation in target domain.
We compare Butter y with existing UDA methods @2 simulated an® real-world WUDA tasks.
Empirical results demonstrate that Butter y can robustly transfer knowledge from noisy source data
to unlabeled target data. In future, we can extend our Butter y framework to address few-shot DA
and open-set UDA when source domain contains noisy data.

References

[1] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. Kanwal, T. Maharaj, A. Fischer,
A. Courville, and Y. Bengio. A closer look at memorization in deep network$CML, 2017.

[2] S.Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of
learning from different domainsviLJ, 79(1-2):151-175, 2010.

[3] Y. Bengio. Evolving culture versus local minima. @rowing Adaptive Machinegpages
109-138. 2014.

[4] A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object
classi cation: a domain adaptation approachNeurlPS pages 181-189, 2010.

[5] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. Imagenet: A large-scale hierarchical image
database. ICVPR pages 248-255, 2009.

[6] Y. Ganin and V. S. Lempitsky. Unsupervised domain adaptation by backpropagati@ML;
pages 1180-1189, 2015.

[7] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. S. Lempitsky. Domain-adversarial training of neural networRdLR, 17:59:1-59:35, 2016.

[8] M. Ghifary, D. Balduzzi, W. B. Kleijn, and M. Zhang. Scatter component analysis : A uni ed
framework for domain adaptation and domain generalizafiétAMI, 39(7):1414-1430, 2017.

[9] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic ow kernel for unsupervised domain
adaptation. IrCVPR pages 2066—-2073, 2012.

[10] M. Gong, K. Zhang, B. Huang, C. Glymour, D. Tao, and K. Batmanghelich. Causal generative
domain adaptation network€oRR abs/1804.04333, 2018.

[11] M. Gong, K. Zhang, T. Liu, D. Tao, and C. Glymour. Domain adaptation with conditional
transferable components. IBML, pages 2839-2848, 2016.

[12] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schdélkopf, and A. J. Smola. A kernel two-sample
test.JMLR 13:723-773, 2012.

[13] G. Grif n, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical report,
California Institute of Technology, 2007.

[14] Y. Guo and M. Xiao. Cross language text classi cation via subspace co-regularized multi-view
learning. InICML, 2012.

[15] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. W. Tsang, and M. Sugiyama. Co-teaching:
Robust training of deep neural networks with extremely noisy labelsNduarlPS pages
8527-8537, 2018.

[16] J. Hoffman, E. Tzeng, T. Park, J. Zhu, P. Isola, K. Saenko, A. A. Efros, and T. Darrell. Cycada:
Cycle-consistent adversarial domain adaptatiodCML, pages 1994—-2003, 2018.

[17] L. Jiang, Z. Zhou, T. Leung, L. Li, and F. Li. Mentornet: Learning data-driven curriculum for
very deep neural networks on corrupted labeldANIL, pages 2309-2318, 2018.

[18] J. Lee and M. Raginsky. Minimax statistical learning with wasserstein distancBieultPS
pages 2692-2701, 2018.

[19] K. Lee, X. He, L. Zhang, and L. Yang. Cleannet: Transfer learning for scalable image classi er
training with label noise. I€VPR pages 5447-5456, 2018.

[20] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao. Deep domain generalization via
conditional invariant adversarial networks. BCCV, pages 647-663, 2018.

[21] T. Liu and D. Tao. Classi cation with noisy labels by importance reweightinigeAMI,
38(3):447-461, 2016.

[22] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with deep adaptation
networks. INICML, pages 97-105, 2015.

[23] E. Malach and S. Shalev-Shwartz. Decoupling "when to update" from "how to update”. In
NeurlPS pages 961-971, 2017.

[24] S. Moatiian, Q. Jones, S. M. Iranmanesh, and G. Doretto. Few-shot adversarial domain adaptation.
In NeurlPS pages 6673-6683, 2017.

[25] K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-training for unsupervised domain adaptation.
In ICML, pages 2988-2997, 2017.

[26] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum classi er discrepancy for unsuper-
vised domain adaptation. RVPR pages 3723-3732, 2018.

[27] F. Schroff, A. Criminisi, and A. Zisserman. Harvesting image databases from theT®wahl,
33(4):754-766, 2011.

[28] Y. Shu, Z. Cao, M. Long, and J. Wang. Transferable curriculum for weakly-supervised domain
adaptation. IPAAAI, 2019.

[29] T. Tommasi and T. Tuytelaars. A testbed for cross-dataset analysiECGV TASK-CV
Workshopspages 18-31, 2014.

[30] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across domains
and tasks. InCCV, pages 4068-4076, 2015.

[31] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation.
In CVPR pages 2962-2971, 2017.

[32] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene
recognition from abbey to zoo. IGVPR pages 3485-3492, 2010.

[33] M. Xiao and Y. Guo. Feature space independent semi-supervised domain adaptation via kernel
matching. TPAMI, 37(1):54-66, 2015.

[34] T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang. Learning from massive noisy labeled data for
image classi cation. ICVPR pages 2691-2699, 2015.

[35] Xiyu Yu, Tongliang Liu, Mingming Gong, Kun Zhang, Kayhan Batmanghelich, and Dacheng
Tao. Transfer learning with label noisatXiv preprint arXiv:1707.097242017.

[36] K. Zhang, M. Gong, and B. Schdlkopf. Multi-source domain adaptation: A causal view. In
AAAI, pages 3150-3157, 2015.

[37] K. Zhang, B. Scholkopf, K. Muandet, and Z. Wang. Domain adaptation under target and
conditional shift. INNCML, pages 819-827, 2013.

10

A Review of generation of noisy labels

This section presents a review on two label-noise generation processes.

A.1 Transition matrix

We assume that there is a clean multivariate random variableYg) de ned onX Y with

a probability densityps(Xs;Ys), whereY = f1;:::;;K gis a label set wittK labels. However,

samples of Xs; Ys) cannot be directly obtained and we only can observe noisy source data from

the multivariate random variabl&¢; Ys) de ned onX Y with a probability densitys(Xs; ¥s).

Ps(Xs; Ys) is generated by a transition probabil®(Ys = jjYs = i), i.e., the ip rate from a

E,Iean labeli to a ncE;sy labej. When we generatps(Xs; Ys) using Q, we often assume that
yesl pPs(Xs;Ys) = vzl Bs(Xs; ¥s), i.e., the class conditional noisgl]. All these transition

probabilities are summarized into a transition ma@ixwhereQ; = Pr(Ys = jjYs = i).

The transition matridXQ is easily estimated in certain situatiorisl]. However, in more complex
situations, such as clothing1lM datas@&f]| noisy source data is directly generated by selecting data
from a pool, which mixes correct data (data with correct labels) and incorrect data (data with incorrect
labels). Namely, how the correct labidk corruptedtq (i 6 j) is unclear.

A.2 Sample selection

Formally, there is a multivariate random variafles; Ys; Vs) de nedonX Y V with a probability
densityp°(xs; Ys; Vs), whereV = f0; 1gandVs = 1 means “correct” ani¥fs = 0 means “incorrect”.

Nonetheless, samples frafK s; Ys; Vs) cannot be obtained and we can only obs€ixeg; Ys) from
a distribution with the following density.

Xt
Ps(Xs; ¥s) = IOQOS;YSJVS (Xs; ysjVs)p\p/(s) (vs); (6)
ve=0
P
wherep((vs) = ;:1 P2°(Xs; Ys; Vs)dxs. The density in Eq.(6) means that we lost the
information fromVs. If we uniformly select samples drawn from(Xs;¥s), the noisy rate of
these samples pf,i’ (0). Itis clear that the multivariate random varialdes; YsjVs = 1) is the

clean multivariate random variab{X s; Ys) de ned in Appendix A.1. Thengs(Xs;Ys) is used to
describe the density of incorrect multivariate random varigHilg; YsjVs = 0) . Usingps(Xs;Ys) and
0s(Xs; ¥s), Ps(Xs; ¥s) can be expressed by the following equation.

Ps(Xs;¥s) = (1)Ps(Xs;¥s) + Os(Xs;Ys); (7)

P P
where = p{’,‘s’(O). Here, we do not assume)'fszl Ps(Xs;Ys) = §s=l 0s(Xs;Ys). To reduce noise
effects from incorrect data, scholars aim to recover the informatidf ,afe., to select correct data
from data drawn fronps(Xs; ¥s) [15, 17, 23].

B Transition matrix Q

Precise de nitions of Symmetry ipping and Pair ipping are presented below, whessthe noisy

rate andK is the number of labels. 2 3
1 s L o S
1 1 1 R
Symmetry ipping: Q = : : :
K1 K 1 ** K 1
21 0 . 0 3
0 1 0
Pair ipping: Q= : : :
0 1

11

C Results on Amazon products reviews

Tables 3 and 4 report the target-domain accuracy of each meth&d farman-sentiment tasks. For

the these tasks, B-Net has the highest average accuracy. It should be noted that two-step method does
not always work, such as f@0%-noise situation. The main reason is Co-teaching performs poorly
when pinpointing clean source data from noisy source data. Another observation is that noise effects
is not eliminated like classi cation results @YND$ MNIST. The main reason is that these datasets
provide xed features and we cannot extract better features in the training process. However, in
SYNDH MNISTtasks, we can gradually obtain better features for each domain and nally eliminate
noise effects.

Table 3: Target-domain accuracy &8 human-sentimentisks with20% noisy rate. Bold values
mean highest values in each row.

Tasks DAN DANN ATDA TCL Co+ATDA B-Net-1T B-Net

B! D 68.28% 68.08% 70.31% 71.40% 66.70% 72.42% 71.84%
B! E 63.78% 63.53% 72.79% 65.08% 68.89% 73.50% 75.92%
B! K 65.48% 64.63% 71.79% 66.80% 66.51% 74.63% 76.32%
D! B 64.63% 64.52% 70.25% 67.33% 68.04% 70.69% 70.56%
D! E 65.33% 65.16% 69.99% 66.74% 67.32% 72.74% 73.73%
D! K 65.68% 66.28% 74.53% 68.82% 72.20% 76.47% 77.97%
E! B 60.41% 60.15% 63.89% 63.13% 61.08% 65.52% 62.22%
E! D 62.35% 61.67% 62.30% 62.93% 59.77% 64.22% 63.53%
El K 72.05% 7151% 74.00% 75.36% 70.85% 75.80% 78.96%
K!' B 59.94% 59.40% 63.53% 62.77% 61.22% 64.16% 63.36%
KI'D 61.46% 61.51% 64.66% 64.16% 64.94% 67.52% 66.98%
KI' E 70.60% 72.23% 74.75% 74.14% 69.69% 75.21% 76.96%

Average 65.00% 64.89% 69.40% 67.39% 66.43% 71.07%71.53%

Table 4: Target-domain accuracy b8 human-sentimeriisks with45% noisy rate. Bold values
mean highest values in each row.

Tasks DAN DANN ATDA TCL Co+ATDA B-Net-1T B-Net

B! D 52.43% 52.98% 53.56% 54.44% 54.32% 54.89% 56.59%
B! E 52.17% 53.50% 55.14% 54.14%57.34% 56.93% 55.74%
B! K 52.89% 51.84% 51.14% 53.32% 53.28% 58.38% 57.00%
D! B 53.11% 53.04% 54.48% 53.27%55.95% 51.37% 55.15%
D! E 51.30% 53.04% 54.21% 53.77% 56.08% 55.04% 58.91%
D! K 52.15% 53.17% 57.99% 52.45% 59.94% 58.43% 66.20%
E! B 51.38% 51.08% 52.54% 52.14% 53.30% 50.53% 54.93%
E! D 52.83% 51.24% 49.02% 52.57% 49.62% 50.11% 52.88%
E! K 54.21% 53.58% 51.66% 55.04% 52.10% 48.62% 56.12%
K!' B 50.44% 51.77% 51.96% 51.50% 52.59% 49.88% 51.39%
K!' D 52.20% 51.45% 52.86% 53.19% 54.52% 52.91% 53.53%
Kl E 54.72% 53.33% 52.11% 53.46% 52.62% 53.11% 53.71%

Average 52.49% 52.50% 53.65% 53.06% 54.31% 53.35%56.01%

D Experimental settings

D.1 Network structure and optimizer

We implement all methods on Python 3.6 with a NIVIDIA P100 GPU. We use MomentumSGD
for optimization in digit and real-world tasks, and set the momentur®:%sWe use Adagrad

for optimization in human-sentiment tasks because of sparsity of review 2igtaH;, F», Fi1
andF;, are 6-layer CNN 3 convolutional layers and fully-connected layers) for digit tasks; and

12

Figure 5: The architecture of B-Net for tas&®ND$ MNIST. We added BN layer in the last
convolution layer in CNN and FC layers iy andF,. We also used dropout in the last convolution
layer in CNN and FC layers iRy, F», Fi1 andF;, (dropout probability is set t6:5).

Figure 6: The architecture of B-Net for tagikgman-sentiment analysig/e added BN layer in the
rst FC layers inF; andF,. We also used dropout in the rst FC layerska, Fo, Fi; andF¢;
(dropout probability is set t6:5).

are 3-layer neural network8 fully-connected layers) for human-sentiment tasks; andidager

neural networks4 fully-connected layers) for real-world tasks. The ReLU active function is used

as avtivation function of these networks. Besides, dropout and batch normalization are also used.
The network topology is shown in Figures 5, 6, 7. As deep networks are highly nonconvex, even
with the same network and optimization method, different initializations can lead to different local
optimal. Thus, following 15, 23], we also take four networks with the same architecture but different
initializations as four classi ers.

D.2 Experimental setup

For all 35 WUDA tasks, Tk is set to5, Tnax is set to30. Learning rate is set t@:01 for simulated
tasks and:05 for real-world tasks, ; is set t00:05 for simulated tasks an@02 for real-world tasks.
Con dence level of labelling function in lin@ of Algorithm 2 is set td:95 for 8 digit tasks, and:9
for 24 human-sentiment tasks af for 3 real-world tasks. is set to0:4 for digit tasks,0:1 for
human-sentiment tasks aft for real-world tasksnl. .., is set tol5; 000for digit tasks 500for
human-sentiment tasks ad@00for real-world tasksNnax is set to1000for digit tasks an@®00for
human-sentiment and real-world tasks. Batch size is sE28dor digit and real-world tasks arzi
for human-sentiment tasks. Penalty parameter is s&0tbfor digit and real-world tasks ar@001
for human-sentiment tasks.

13

	Introduction
	Wildly unsupervised domain adaptation
	Two-step approach versus one-step approach
	Butterfly: Towards robust one-step approach
	Experiments
	Conclusions
	Review of generation of noisy labels
	Transition matrix
	Sample selection

	Transition matrix Q
	Results on Amazon products reviews
	Experimental settings
	Network structure and optimizer
	Experimental setup
	Links to datasets

	Datasets visualization
	Additional experiments
	Running time
	Theoretical analysis
	Proof of Theorem 1
	Proof of Theorem 2
	Theorem 3: Eliminating noise effects
	Preliminary
	Proof of Theorem 3

